"""ClearML logger and its helper handlers."""
import numbers
import os
import tempfile
import warnings
from collections import defaultdict
from datetime import datetime
from enum import Enum
from typing import Any, Callable, DefaultDict, List, Mapping, Optional, Tuple, Type, Union
import torch
from torch.nn import Module
from torch.optim import Optimizer
import ignite.distributed as idist
from ignite.contrib.handlers.base_logger import (
    BaseLogger,
    BaseOptimizerParamsHandler,
    BaseOutputHandler,
    BaseWeightsHistHandler,
    BaseWeightsScalarHandler,
)
from ignite.engine import Engine, Events
from ignite.handlers import global_step_from_engine
from ignite.handlers.checkpoint import DiskSaver
__all__ = [
    "ClearMLLogger",
    "ClearMLSaver",
    "OptimizerParamsHandler",
    "OutputHandler",
    "WeightsScalarHandler",
    "WeightsHistHandler",
    "GradsScalarHandler",
    "GradsHistHandler",
    "global_step_from_engine",
]
[docs]class ClearMLLogger(BaseLogger):
    """
    `ClearML <https://github.com/allegroai/clearml>`_ handler to log metrics, text, model/optimizer parameters,
    plots during training and validation.
    Also supports model checkpoints logging and upload to the storage solution of your choice (i.e. ClearML File server,
    S3 bucket etc.)
    .. code-block:: bash
        pip install clearml
        clearml-init
    Args:
        project_name: The name of the project in which the experiment will be created. If the project
            does not exist, it is created. If ``project_name`` is ``None``, the repository name is used. (Optional)
        task_name: The name of Task (experiment). If ``task_name`` is ``None``, the Python experiment
            script's file name is used. (Optional)
        task_type: Optional. The task type. Valid values are:
            - ``TaskTypes.training`` (Default)
            - ``TaskTypes.train``
            - ``TaskTypes.testing``
            - ``TaskTypes.inference``
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            # Attach the logger to the trainer to log training loss at each iteration
            clearml_logger.attach_output_handler(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                tag="training",
                output_transform=lambda loss: {"loss": loss}
            )
            # Attach the logger to the evaluator on the training dataset and log NLL, Accuracy metrics after each epoch
            # We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
            # of the `trainer` instead of `train_evaluator`.
            clearml_logger.attach_output_handler(
                train_evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="training",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer),
            )
            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch of the
            # `trainer` instead of `evaluator`.
            clearml_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer)),
            )
            # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
            clearml_logger.attach_opt_params_handler(
                trainer,
                event_name=Events.ITERATION_STARTED,
                optimizer=optimizer,
                param_name='lr'  # optional
            )
            # Attach the logger to the trainer to log model's weights norm after each iteration
            clearml_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(model)
            )
    """
    def __init__(self, *_: Any, **kwargs: Any):
        try:
            from clearml import Task
            from clearml.binding.frameworks.tensorflow_bind import WeightsGradientHistHelper
        except ImportError:
            try:
                # Backwards-compatibility for legacy Trains SDK
                from trains import Task
                from trains.binding.frameworks.tensorflow_bind import WeightsGradientHistHelper
            except ImportError:
                raise RuntimeError(
                    "This contrib module requires clearml to be installed. "
                    "You may install clearml using: \n pip install clearml \n"
                )
        experiment_kwargs = {k: v for k, v in kwargs.items() if k not in ("project_name", "task_name", "task_type")}
        if self.bypass_mode():
            warnings.warn("ClearMLSaver: running in bypass mode")
            class _Stub(object):
                def __call__(self, *_: Any, **__: Any) -> "_Stub":
                    return self
                def __getattr__(self, attr: str) -> "_Stub":
                    if attr in ("name", "id"):
                        return ""  # type: ignore[return-value]
                    return self
                def __setattr__(self, attr: str, val: Any) -> None:
                    pass
            self._task = _Stub()
        else:
            self._task = Task.init(
                project_name=kwargs.get("project_name"),
                task_name=kwargs.get("task_name"),
                task_type=kwargs.get("task_type", Task.TaskTypes.training),
                **experiment_kwargs,
            )
        self.clearml_logger = self._task.get_logger()
        self.grad_helper = WeightsGradientHistHelper(logger=self.clearml_logger)
[docs]    @classmethod
    def set_bypass_mode(cls, bypass: bool) -> None:
        """
        Will bypass all outside communication, and will drop all logs.
        Should only be used in "standalone mode", when there is no access to the *clearml-server*.
        Args:
            bypass: If ``True``, all outside communication is skipped.
        """
        setattr(cls, "_bypass", bypass) 
[docs]    @classmethod
    def bypass_mode(cls) -> bool:
        """
        Returns the bypass mode state.
        Note:
            `GITHUB_ACTIONS` env will automatically set bypass_mode to ``True``
            unless overridden specifically with ``ClearMLLogger.set_bypass_mode(False)``.
        Return:
            If True, all outside communication is skipped.
        """
        return getattr(cls, "_bypass", bool(os.environ.get("CI"))) 
    def close(self) -> None:
        self.clearml_logger.flush()
    def _create_output_handler(self, *args: Any, **kwargs: Any) -> "OutputHandler":
        return OutputHandler(*args, **kwargs)
    def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> "OptimizerParamsHandler":
        return OptimizerParamsHandler(*args, **kwargs) 
[docs]class OutputHandler(BaseOutputHandler):
    """Helper handler to log engine's output and/or metrics
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # each epoch. We setup `global_step_transform=global_step_from_engine(trainer)` to take the epoch
            # of the `trainer`:
            clearml_logger.attach(
                evaluator,
                log_handler=OutputHandler(
                    tag="validation",
                    metric_names=["nll", "accuracy"],
                    global_step_transform=global_step_from_engine(trainer)
                ),
                event_name=Events.EPOCH_COMPLETED
            )
            # or equivalently
            clearml_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metric_names=["nll", "accuracy"],
                global_step_transform=global_step_from_engine(trainer)
            )
        Another example, where model is evaluated every 500 iterations:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            @trainer.on(Events.ITERATION_COMPLETED(every=500))
            def evaluate(engine):
                evaluator.run(validation_set, max_epochs=1)
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            def global_step_transform(*args, **kwargs):
                return trainer.state.iteration
            # Attach the logger to the evaluator on the validation dataset and log NLL, Accuracy metrics after
            # every 500 iterations. Since evaluator engine does not have access to the training iteration, we
            # provide a global_step_transform to return the trainer.state.iteration for the global_step, each time
            # evaluator metrics are plotted on ClearML.
            clearml_logger.attach_output_handler(
                evaluator,
                event_name=Events.EPOCH_COMPLETED,
                tag="validation",
                metrics=["nll", "accuracy"],
                global_step_transform=global_step_transform
            )
    Args:
        tag: common title for all produced plots. For example, "training"
        metric_names: list of metric names to plot or a string "all" to plot all available
            metrics.
        output_transform: output transform function to prepare `engine.state.output` as a number.
            For example, `output_transform = lambda output: output`
            This function can also return a dictionary, e.g `{"loss": loss1, "another_loss": loss2}` to label the plot
            with corresponding keys.
        global_step_transform: global step transform function to output a desired global step.
            Input of the function is `(engine, event_name)`. Output of function should be an integer.
            Default is None, global_step based on attached engine. If provided,
            uses function output as global_step. To setup global step from another engine, please use
            :meth:`~ignite.contrib.handlers.clearml_logger.global_step_from_engine`.
    Note:
        Example of `global_step_transform`:
        .. code-block:: python
            def global_step_transform(engine, event_name):
                return engine.state.get_event_attrib_value(event_name)
    """
    def __init__(
        self,
        tag: str,
        metric_names: Optional[List[str]] = None,
        output_transform: Optional[Callable] = None,
        global_step_transform: Optional[Callable] = None,
    ):
        super(OutputHandler, self).__init__(tag, metric_names, output_transform, global_step_transform)
    def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, ClearMLLogger):
            raise RuntimeError("Handler OutputHandler works only with ClearMLLogger")
        metrics = self._setup_output_metrics(engine)
        global_step = self.global_step_transform(engine, event_name)  # type: ignore[misc]
        if not isinstance(global_step, int):
            raise TypeError(
                f"global_step must be int, got {type(global_step)}."
                " Please check the output of global_step_transform."
            )
        for key, value in metrics.items():
            if isinstance(value, numbers.Number) or isinstance(value, torch.Tensor) and value.ndimension() == 0:
                logger.clearml_logger.report_scalar(title=self.tag, series=key, iteration=global_step, value=value)
            elif isinstance(value, torch.Tensor) and value.ndimension() == 1:
                for i, v in enumerate(value):
                    logger.clearml_logger.report_scalar(
                        title=f"{self.tag}/{key}", series=str(i), iteration=global_step, value=v.item()
                    )
            else:
                warnings.warn(f"ClearMLLogger output_handler can not log metrics value type {type(value)}") 
[docs]class OptimizerParamsHandler(BaseOptimizerParamsHandler):
    """Helper handler to log optimizer parameters
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
            clearml_logger.attach(
                trainer,
                log_handler=OptimizerParamsHandler(optimizer),
                event_name=Events.ITERATION_STARTED
            )
            # or equivalently
            clearml_logger.attach_opt_params_handler(
                trainer,
                event_name=Events.ITERATION_STARTED,
                optimizer=optimizer
            )
    Args:
        optimizer: torch optimizer or any object with attribute ``param_groups``
            as a sequence.
        param_name: parameter name
        tag: common title for all produced plots. For example, "generator"
    """
    def __init__(self, optimizer: Optimizer, param_name: str = "lr", tag: Optional[str] = None):
        super(OptimizerParamsHandler, self).__init__(optimizer, param_name, tag)
    def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, ClearMLLogger):
            raise RuntimeError("Handler OptimizerParamsHandler works only with ClearMLLogger")
        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        params = {
            str(i): float(param_group[self.param_name]) for i, param_group in enumerate(self.optimizer.param_groups)
        }
        for k, v in params.items():
            logger.clearml_logger.report_scalar(
                title=f"{tag_prefix}{self.param_name}", series=k, value=v, iteration=global_step
            ) 
[docs]class WeightsScalarHandler(BaseWeightsScalarHandler):
    """Helper handler to log model's weights as scalars.
    Handler iterates over named parameters of the model, applies reduction function to each parameter
    produce a scalar and then logs the scalar.
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            # Attach the logger to the trainer to log model's weights norm after each iteration
            clearml_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsScalarHandler(model, reduction=torch.norm)
            )
    Args:
        model: model to log weights
        reduction: function to reduce parameters into scalar
        tag: common title for all produced plots. For example, "generator"
    """
    def __init__(self, model: Module, reduction: Callable = torch.norm, tag: Optional[str] = None):
        super(WeightsScalarHandler, self).__init__(model, reduction, tag=tag)
    def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, ClearMLLogger):
            raise RuntimeError("Handler WeightsScalarHandler works only with ClearMLLogger")
        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.model.named_parameters():
            if p.grad is None:
                continue
            title_name, _, series_name = name.partition(".")
            logger.clearml_logger.report_scalar(
                title=f"{tag_prefix}weights_{self.reduction.__name__}/{title_name}",
                series=series_name,
                value=self.reduction(p.data),
                iteration=global_step,
            ) 
[docs]class WeightsHistHandler(BaseWeightsHistHandler):
    """Helper handler to log model's weights as histograms.
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            # Attach the logger to the trainer to log model's weights norm after each iteration
            clearml_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=WeightsHistHandler(model)
            )
    Args:
        model: model to log weights
        tag: common title for all produced plots. For example, 'generator'
    """
    def __init__(self, model: Module, tag: Optional[str] = None):
        super(WeightsHistHandler, self).__init__(model, tag=tag)
    def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, ClearMLLogger):
            raise RuntimeError("Handler 'WeightsHistHandler' works only with ClearMLLogger")
        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.model.named_parameters():
            if p.grad is None:
                continue
            title_name, _, series_name = name.partition(".")
            logger.grad_helper.add_histogram(
                title=f"{tag_prefix}weights_{title_name}",
                series=series_name,
                step=global_step,
                hist_data=p.grad.detach().cpu().numpy(),
            ) 
[docs]class GradsScalarHandler(BaseWeightsScalarHandler):
    """Helper handler to log model's gradients as scalars.
    Handler iterates over the gradients of named parameters of the model, applies reduction function to each parameter
    produce a scalar and then logs the scalar.
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            # Attach the logger to the trainer to log model's weights norm after each iteration
            clearml_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=GradsScalarHandler(model, reduction=torch.norm)
            )
    Args:
        model: model to log weights
        reduction: function to reduce parameters into scalar
        tag: common title for all produced plots. For example, "generator"
    """
    def __init__(self, model: Module, reduction: Callable = torch.norm, tag: Optional[str] = None):
        super(GradsScalarHandler, self).__init__(model, reduction, tag=tag)
    def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, ClearMLLogger):
            raise RuntimeError("Handler GradsScalarHandler works only with ClearMLLogger")
        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.model.named_parameters():
            if p.grad is None:
                continue
            title_name, _, series_name = name.partition(".")
            logger.clearml_logger.report_scalar(
                title=f"{tag_prefix}grads_{self.reduction.__name__}/{title_name}",
                series=series_name,
                value=self.reduction(p.data),
                iteration=global_step,
            ) 
[docs]class GradsHistHandler(BaseWeightsHistHandler):
    """Helper handler to log model's gradients as histograms.
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            # Create a logger
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            # Attach the logger to the trainer to log model's weights norm after each iteration
            clearml_logger.attach(
                trainer,
                event_name=Events.ITERATION_COMPLETED,
                log_handler=GradsHistHandler(model)
            )
    Args:
        model: model to log weights
        tag: common title for all produced plots. For example, 'generator'
    """
    def __init__(self, model: Module, tag: Optional[str] = None):
        super(GradsHistHandler, self).__init__(model, tag=tag)
    def __call__(self, engine: Engine, logger: ClearMLLogger, event_name: Union[str, Events]) -> None:
        if not isinstance(logger, ClearMLLogger):
            raise RuntimeError("Handler 'GradsHistHandler' works only with ClearMLLogger")
        global_step = engine.state.get_event_attrib_value(event_name)
        tag_prefix = f"{self.tag}/" if self.tag else ""
        for name, p in self.model.named_parameters():
            if p.grad is None:
                continue
            title_name, _, series_name = name.partition(".")
            logger.grad_helper.add_histogram(
                title=f"{tag_prefix}grads_{title_name}",
                series=series_name,
                step=global_step,
                hist_data=p.grad.detach().cpu().numpy(),
            ) 
[docs]class ClearMLSaver(DiskSaver):
    """
    Handler that saves input checkpoint as ClearML artifacts
    Args:
        logger: An instance of :class:`~ignite.contrib.handlers.clearml_logger.ClearMLLogger`,
            ensuring a valid ClearML ``Task`` has been initialized. If not provided, and a ClearML Task
            has not been manually initialized, a runtime error will be raised.
        output_uri: The default location for output models and other artifacts uploaded by ClearML. For
            more information, see ``clearml.Task.init``.
        dirname: Directory path where the checkpoint will be saved. If not provided, a temporary
            directory will be created.
    Examples:
        .. code-block:: python
            from ignite.contrib.handlers.clearml_logger import *
            from ignite.handlers import Checkpoint
            clearml_logger = ClearMLLogger(
                project_name="pytorch-ignite-integration",
                task_name="cnn-mnist"
            )
            to_save = {"model": model}
            handler = Checkpoint(
                to_save,
                ClearMLSaver(),
                n_saved=1,
                score_function=lambda e: 123,
                score_name="acc",
                filename_prefix="best",
                global_step_transform=global_step_from_engine(trainer)
            )
            validation_evaluator.add_event_handler(Events.EVENT_COMPLETED, handler)
    """
    def __init__(
        self,
        logger: Optional[ClearMLLogger] = None,
        output_uri: Optional[str] = None,
        dirname: Optional[str] = None,
        *args: Any,
        **kwargs: Any,
    ):
        self._setup_check_clearml(logger, output_uri)
        if not dirname:
            dirname = ""
            if idist.get_rank() == 0:
                dirname = tempfile.mkdtemp(prefix=f"ignite_checkpoints_{datetime.now().strftime('%Y_%m_%d_%H_%M_%S_')}")
            if idist.get_world_size() > 1:
                dirname = idist.all_gather(dirname)[0]  # type: ignore[index, assignment]
            warnings.warn(f"ClearMLSaver created a temporary checkpoints directory: {dirname}")
            idist.barrier()
        # Let's set non-atomic tmp dir saving behaviour
        if "atomic" not in kwargs:
            kwargs["atomic"] = False
        self._checkpoint_slots = defaultdict(list)  # type: DefaultDict[Union[str, Tuple[str, str]], List[Any]]
        super(ClearMLSaver, self).__init__(dirname=dirname, *args, **kwargs)  # type: ignore[misc]
    @idist.one_rank_only()
    def _setup_check_clearml(self, logger: ClearMLLogger, output_uri: str) -> None:
        try:
            from clearml import Task
        except ImportError:
            try:
                # Backwards-compatibility for legacy Trains SDK
                from trains import Task
            except ImportError:
                raise RuntimeError(
                    "This contrib module requires clearml to be installed. "
                    "You may install clearml using: \n pip install clearml \n"
                )
        if logger and not isinstance(logger, ClearMLLogger):
            raise TypeError("logger must be an instance of ClearMLLogger")
        self._task = Task.current_task()
        if not self._task:
            raise RuntimeError(
                "ClearMLSaver requires a ClearML Task to be initialized. "
                "Please use the `logger` argument or call `clearml.Task.init()`."
            )
        if output_uri:
            self._task.output_uri = output_uri
    class _CallbacksContext:
        def __init__(
            self,
            callback_type: Type[Enum],
            slots: List,
            checkpoint_key: str,
            filename: str,
            basename: str,
            metadata: Optional[Mapping] = None,
        ) -> None:
            self._callback_type = callback_type
            self._slots = slots
            self._checkpoint_key = str(checkpoint_key)
            self._filename = filename
            self._basename = basename
            self._metadata = metadata
        def pre_callback(self, action: str, model_info: Any) -> Any:
            if action != self._callback_type.save:  # type: ignore[attr-defined]
                return model_info
            try:
                slot = self._slots.index(None)
                self._slots[slot] = model_info.upload_filename
            except ValueError:
                self._slots.append(model_info.upload_filename)
                slot = len(self._slots) - 1
            model_info.upload_filename = f"{self._basename}_{slot}{os.path.splitext(self._filename)[1]}"
            model_info.local_model_id = f"{self._checkpoint_key}:{model_info.upload_filename}"
            return model_info
        def post_callback(self, action: str, model_info: Any) -> Any:
            if action != self._callback_type.save:  # type: ignore[attr-defined]
                return model_info
            model_info.model.name = f"{model_info.task.name}: {self._filename}"
            prefix = "Checkpoint Metadata: "
            metadata_items = ", ".join(f"{k}={v}" for k, v in self._metadata.items()) if self._metadata else "none"
            metadata = f"{prefix}{metadata_items}"
            comment = "\n".join(
                metadata if line.startswith(prefix) else line for line in (model_info.model.comment or "").split("\n")
            )
            if prefix not in comment:
                comment += "\n" + metadata
            model_info.model.comment = comment
            return model_info
    def __call__(self, checkpoint: Mapping, filename: str, metadata: Optional[Mapping] = None) -> None:
        try:
            from clearml import Model
            from clearml.binding.frameworks import WeightsFileHandler
        except ImportError:
            try:
                # Backwards-compatibility for legacy Trains SDK
                from trains import Model
                from trains.binding.frameworks import WeightsFileHandler
            except ImportError:
                raise RuntimeError(
                    "This contrib module requires clearml to be installed. "
                    "You may install clearml using: \n pip install clearml \n"
                )
        try:
            basename = metadata["basename"]  # type: ignore[index]
        except (TypeError, KeyError):
            warnings.warn("Checkpoint metadata missing or basename cannot be found")
            basename = "checkpoint"
        checkpoint_key = (self.dirname, basename)
        cb_context = self._CallbacksContext(
            callback_type=WeightsFileHandler.CallbackType,
            slots=self._checkpoint_slots[checkpoint_key],
            checkpoint_key=str(checkpoint_key),
            filename=filename,
            basename=basename,
            metadata=metadata,
        )
        pre_cb_id = WeightsFileHandler.add_pre_callback(cb_context.pre_callback)
        post_cb_id = WeightsFileHandler.add_post_callback(cb_context.post_callback)
        try:
            super(ClearMLSaver, self).__call__(checkpoint, filename, metadata)
        finally:
            WeightsFileHandler.remove_pre_callback(pre_cb_id)
            WeightsFileHandler.remove_post_callback(post_cb_id)
[docs]    @idist.one_rank_only()
    def get_local_copy(self, filename: str) -> Optional[str]:
        """Get artifact local copy.
        .. warning::
            In distributed configuration this method should be called on rank 0 process.
        Args:
            filename: artifact name.
        Returns:
             a local path to a downloaded copy of the artifact
        """
        artifact = self._task.artifacts.get(filename)
        if artifact:
            return artifact.get_local_copy()
        self._task.get_logger().report_text(f"Can not find artifact {filename}")
        return None 
[docs]    @idist.one_rank_only()
    def remove(self, filename: str) -> None:
        super(ClearMLSaver, self).remove(filename)
        for slots in self._checkpoint_slots.values():
            try:
                slots[slots.index(filename)] = None
            except ValueError:
                pass
            else:
                break