Source code for ignite.contrib.metrics.regression.geometric_mean_relative_absolute_error
from typing import Tuple, Union, cast
import torch
from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.exceptions import NotComputableError
[docs]class GeometricMeanRelativeAbsoluteError(_BaseRegression):
    r"""Calculates the Geometric Mean Relative Absolute Error.
    .. math::
        \text{GMRAE} = \exp(\frac{1}{n}\sum_{j=1}^n \ln\frac{|A_j - P_j|}{|A_j - \bar{A}|})
    where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
    More details can be found in `Botchkarev 2018`__.
    - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
    - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`.
    __ https://arxiv.org/abs/1809.03006
    Parameters are inherited from ``Metric.__init__``.
    Args:
        output_transform: a callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric. This can be useful if, for example, you have a multi-output model and
            you want to compute the metric with respect to one of the outputs.
            By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
        device: specifies which device updates are accumulated on. Setting the
            metric's device to be the same as your ``update`` arguments ensures the ``update`` method is
            non-blocking. By default, CPU.
    """
[docs]    def reset(self) -> None:
        self._sum_y = 0.0  # type: Union[float, torch.Tensor]
        self._num_examples = 0
        self._sum_of_errors = 0.0  # type: Union[float, torch.Tensor] 
    def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
        y_pred, y = output
        self._sum_y += y.sum()
        self._num_examples += y.shape[0]
        y_mean = self._sum_y / self._num_examples
        numerator = torch.abs(y.view_as(y_pred) - y_pred)
        denominator = torch.abs(y.view_as(y_pred) - y_mean)
        self._sum_of_errors += torch.log(numerator / denominator).sum()
[docs]    def compute(self) -> float:
        if self._num_examples == 0:
            raise NotComputableError(
                "GeometricMeanRelativeAbsoluteError must have at least one example before it can be computed."
            )
        return torch.exp(torch.mean(cast(torch.Tensor, self._sum_of_errors) / self._num_examples)).item()