Source code for ignite.contrib.metrics.regression.manhattan_distance
from typing import Tuple
import torch
from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce
[docs]class ManhattanDistance(_BaseRegression):
    r"""Calculates the Manhattan Distance.
    .. math::
        \text{MD} = \sum_{j=1}^n |A_j - P_j|
    where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
    More details can be found in `scikit-learn distance metrics`__.
    - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
    - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`.
    __ https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.DistanceMetric.html
    Parameters are inherited from ``Metric.__init__``.
    Args:
        output_transform: a callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric. This can be useful if, for example, you have a multi-output model and
            you want to compute the metric with respect to one of the outputs.
            By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
        device: specifies which device updates are accumulated on. Setting the
            metric's device to be the same as your ``update`` arguments ensures the ``update`` method is
            non-blocking. By default, CPU.
    .. versionchanged:: 0.4.3
        - Fixed sklearn compatibility.
        - Workes with DDP.
    """
[docs]    @reinit__is_reduced
    def reset(self) -> None:
        self._sum_of_errors = torch.tensor(0.0, device=self._device) 
    def _update(self, output: Tuple[torch.Tensor, torch.Tensor]) -> None:
        y_pred, y = output
        errors = torch.abs(y - y_pred)
        self._sum_of_errors += torch.sum(errors).to(self._device)
[docs]    @sync_all_reduce("_sum_of_errors")
    def compute(self) -> float:
        return self._sum_of_errors.item()