Source code for ignite.contrib.metrics.regression.median_relative_absolute_error
from typing import Callable
import torch
from ignite.metrics import EpochMetric
def median_relative_absolute_error_compute_fn(y_pred: torch.Tensor, y: torch.Tensor) -> float:
    e = torch.abs(y.view_as(y_pred) - y_pred) / torch.abs(y.view_as(y_pred) - torch.mean(y))
    return torch.median(e).item()
[docs]class MedianRelativeAbsoluteError(EpochMetric):
    r"""Calculates the Median Relative Absolute Error.
    .. math::
        \text{MdRAE} = \text{MD}_{j=1,n} \left( \frac{|A_j - P_j|}{|A_j - \bar{A}|} \right)
    where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
    More details can be found in `Botchkarev 2018`__.
    - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
    - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)` and of type `float32`.
    .. warning::
        Current implementation stores all input data (output and target) in as tensors before computing a metric.
        This can potentially lead to a memory error if the input data is larger than available RAM.
    __ https://arxiv.org/abs/1809.03006
    Args:
        output_transform: a callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric. This can be useful if, for example, you have a multi-output model and
            you want to compute the metric with respect to one of the outputs.
            By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
    """
    def __init__(self, output_transform: Callable = lambda x: x):
        super(MedianRelativeAbsoluteError, self).__init__(median_relative_absolute_error_compute_fn, output_transform)