Source code for ignite.contrib.metrics.roc_auc
from typing import Any, Callable, Tuple
import torch
from ignite.metrics import EpochMetric
def roc_auc_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> float:
    try:
        from sklearn.metrics import roc_auc_score
    except ImportError:
        raise RuntimeError("This contrib module requires sklearn to be installed.")
    y_true = y_targets.numpy()
    y_pred = y_preds.numpy()
    return roc_auc_score(y_true, y_pred)
def roc_auc_curve_compute_fn(y_preds: torch.Tensor, y_targets: torch.Tensor) -> Tuple[Any, Any, Any]:
    try:
        from sklearn.metrics import roc_curve
    except ImportError:
        raise RuntimeError("This contrib module requires sklearn to be installed.")
    y_true = y_targets.numpy()
    y_pred = y_preds.numpy()
    return roc_curve(y_true, y_pred)
[docs]class ROC_AUC(EpochMetric):
    """Computes Area Under the Receiver Operating Characteristic Curve (ROC AUC)
    accumulating predictions and the ground-truth during an epoch and applying
    `sklearn.metrics.roc_auc_score <https://scikit-learn.org/stable/modules/generated/
    sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score>`_ .
    Args:
        output_transform: a callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric. This can be useful if, for example, you have a multi-output model and
            you want to compute the metric with respect to one of the outputs.
        check_compute_fn: Default False. If True, `roc_curve
            <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#
            sklearn.metrics.roc_auc_score>`_ is run on the first batch of data to ensure there are
            no issues. User will be warned in case there are any issues computing the function.
    ROC_AUC expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence
    values. To apply an activation to y_pred, use output_transform as shown below:
    .. code-block:: python
        def activated_output_transform(output):
            y_pred, y = output
            y_pred = torch.sigmoid(y_pred)
            return y_pred, y
        roc_auc = ROC_AUC(activated_output_transform)
    """
    def __init__(self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False) -> None:
        super(ROC_AUC, self).__init__(
            roc_auc_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn
        ) 
[docs]class RocCurve(EpochMetric):
    """Compute Receiver operating characteristic (ROC) for binary classification task
    by accumulating predictions and the ground-truth during an epoch and applying
    `sklearn.metrics.roc_curve <https://scikit-learn.org/stable/modules/generated/
    sklearn.metrics.roc_curve.html#sklearn.metrics.roc_curve>`_ .
    Args:
        output_transform: a callable that is used to transform the
            :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
            form expected by the metric. This can be useful if, for example, you have a multi-output model and
            you want to compute the metric with respect to one of the outputs.
        check_compute_fn: Default False. If True, `sklearn.metrics.roc_curve
            <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html#
            sklearn.metrics.roc_curve>`_ is run on the first batch of data to ensure there are
            no issues. User will be warned in case there are any issues computing the function.
    RocCurve expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence
    values. To apply an activation to y_pred, use output_transform as shown below:
    .. code-block:: python
        def activated_output_transform(output):
            y_pred, y = output
            y_pred = torch.sigmoid(y_pred)
            return y_pred, y
        roc_auc = RocCurve(activated_output_transform)
    """
    def __init__(self, output_transform: Callable = lambda x: x, check_compute_fn: bool = False) -> None:
        super(RocCurve, self).__init__(
            roc_auc_curve_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn
        )