Shortcuts

Source code for ignite.metrics.multilabel_confusion_matrix

from typing import Callable, Sequence, Union

import torch

from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce

__all__ = ["MultiLabelConfusionMatrix"]


[docs]class MultiLabelConfusionMatrix(Metric): """Calculates a confusion matrix for multi-labelled, multi-class data. - ``update`` must receive output of the form ``(y_pred, y)``. - `y_pred` must contain 0s and 1s and has the following shape (batch_size, num_classes, ...). For example, `y_pred[i, j]` = 1 denotes that the j'th class is one of the labels of the i'th sample as predicted. - `y` should have the following shape (batch_size, num_classes, ...) with 0s and 1s. For example, `y[i, j]` = 1 denotes that the j'th class is one of the labels of the i'th sample according to the ground truth. - both `y` and `y_pred` must be torch Tensors having any of the following types: {torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64}. They must have the same dimensions. - The confusion matrix 'M' is of dimension (num_classes, 2, 2). * M[i, 0, 0] corresponds to count/rate of true negatives of class i * M[i, 0, 1] corresponds to count/rate of false positives of class i * M[i, 1, 0] corresponds to count/rate of false negatives of class i * M[i, 1, 1] corresponds to count/rate of true positives of class i - The classes present in M are indexed as 0, ... , num_classes-1 as can be inferred from above. Args: num_classes: Number of classes, should be > 1. output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. normalized: whether to normalize confusion matrix by its sum or not. .. versionadded:: 0.5.0 """ def __init__( self, num_classes: int, output_transform: Callable = lambda x: x, device: Union[str, torch.device] = torch.device("cpu"), normalized: bool = False, ): if num_classes <= 1: raise ValueError("Argument num_classes needs to be > 1") self.num_classes = num_classes self._num_examples = 0 self.normalized = normalized super(MultiLabelConfusionMatrix, self).__init__(output_transform=output_transform, device=device)
[docs] @reinit__is_reduced def reset(self) -> None: self.confusion_matrix = torch.zeros(self.num_classes, 2, 2, dtype=torch.int64, device=self._device) self._num_examples = 0
[docs] @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: self._check_input(output) y_pred, y = output[0].detach(), output[1].detach() self._num_examples += y.shape[0] y_reshaped = y.transpose(0, 1).reshape(self.num_classes, -1) y_pred_reshaped = y_pred.transpose(0, 1).reshape(self.num_classes, -1) y_total = y_reshaped.sum(dim=1) y_pred_total = y_pred_reshaped.sum(dim=1) tp = (y_reshaped * y_pred_reshaped).sum(dim=1) fp = y_pred_total - tp fn = y_total - tp tn = y_reshaped.shape[1] - tp - fp - fn self.confusion_matrix += torch.stack([tn, fp, fn, tp], dim=1).reshape(-1, 2, 2).to(self._device)
[docs] @sync_all_reduce("confusion_matrix", "_num_examples") def compute(self) -> torch.Tensor: if self._num_examples == 0: raise NotComputableError("Confusion matrix must have at least one example before it can be computed.") if self.normalized: conf = self.confusion_matrix.to(dtype=torch.float64) sums = conf.sum(dim=(1, 2)) return conf / sums[:, None, None] return self.confusion_matrix
def _check_input(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() if y_pred.ndimension() < 2: raise ValueError( f"y_pred must at least have shape (batch_size, num_classes (currently set to {self.num_classes}), ...)" ) if y.ndimension() < 2: raise ValueError( f"y must at least have shape (batch_size, num_classes (currently set to {self.num_classes}), ...)" ) if y_pred.shape[0] != y.shape[0]: raise ValueError(f"y_pred and y have different batch size: {y_pred.shape[0]} vs {y.shape[0]}") if y_pred.shape[1] != self.num_classes: raise ValueError(f"y_pred does not have correct number of classes: {y_pred.shape[1]} vs {self.num_classes}") if y.shape[1] != self.num_classes: raise ValueError(f"y does not have correct number of classes: {y.shape[1]} vs {self.num_classes}") if y.shape != y_pred.shape: raise ValueError("y and y_pred shapes must match.") valid_types = (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64) if y_pred.dtype not in valid_types: raise ValueError(f"y_pred must be of any type: {valid_types}") if y.dtype not in valid_types: raise ValueError(f"y must be of any type: {valid_types}") if not torch.equal(y_pred, y_pred ** 2): raise ValueError("y_pred must be a binary tensor") if not torch.equal(y, y ** 2): raise ValueError("y must be a binary tensor")