Source code for ignite.metrics.precision
from typing import Callable, Sequence, Union, cast
import torch
import ignite.distributed as idist
from ignite.exceptions import NotComputableError
from ignite.metrics.accuracy import _BaseClassification
from ignite.metrics.metric import reinit__is_reduced
from ignite.utils import to_onehot
__all__ = ["Precision"]
class _BasePrecisionRecall(_BaseClassification):
def __init__(
self,
output_transform: Callable = lambda x: x,
average: bool = False,
is_multilabel: bool = False,
device: Union[str, torch.device] = torch.device("cpu"),
):
self._average = average
self.eps = 1e-20
super(_BasePrecisionRecall, self).__init__(
output_transform=output_transform, is_multilabel=is_multilabel, device=device
)
@reinit__is_reduced
def reset(self) -> None:
self._true_positives = 0 # type: Union[int, torch.Tensor]
self._positives = 0 # type: Union[int, torch.Tensor]
if self._is_multilabel:
init_value = 0.0 if self._average else []
self._true_positives = torch.tensor(init_value, dtype=torch.float64, device=self._device)
self._positives = torch.tensor(init_value, dtype=torch.float64, device=self._device)
super(_BasePrecisionRecall, self).reset()
def compute(self) -> Union[torch.Tensor, float]:
is_scalar = not isinstance(self._positives, torch.Tensor) or self._positives.ndim == 0
if is_scalar and self._positives == 0:
raise NotComputableError(
f"{self.__class__.__name__} must have at least one example before it can be computed."
)
if not self._is_reduced:
if not (self._type == "multilabel" and not self._average):
self._true_positives = idist.all_reduce(self._true_positives) # type: ignore[assignment]
self._positives = idist.all_reduce(self._positives) # type: ignore[assignment]
else:
self._true_positives = cast(torch.Tensor, idist.all_gather(self._true_positives))
self._positives = cast(torch.Tensor, idist.all_gather(self._positives))
self._is_reduced = True # type: bool
result = self._true_positives / (self._positives + self.eps)
if self._average:
return cast(torch.Tensor, result).mean().item()
else:
return result
[docs]class Precision(_BasePrecisionRecall):
r"""Calculates precision for binary and multiclass data.
.. math:: \text{Precision} = \frac{ TP }{ TP + FP }
where :math:`\text{TP}` is true positives and :math:`\text{FP}` is false positives.
- ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``.
- `y_pred` must be in the following shape (batch_size, num_categories, ...) or (batch_size, ...).
- `y` must be in the following shape (batch_size, ...).
In binary and multilabel cases, the elements of `y` and `y_pred` should have 0 or 1 values. Thresholding of
predictions can be done as below:
.. code-block:: python
def thresholded_output_transform(output):
y_pred, y = output
y_pred = torch.round(y_pred)
return y_pred, y
precision = Precision(output_transform=thresholded_output_transform)
In multilabel cases, average parameter should be True. However, if user would like to compute F1 metric, for
example, average parameter should be False. This can be done as shown below:
.. code-block:: python
precision = Precision(average=False, is_multilabel=True)
recall = Recall(average=False, is_multilabel=True)
F1 = precision * recall * 2 / (precision + recall + 1e-20)
F1 = MetricsLambda(lambda t: torch.mean(t).item(), F1)
.. warning::
In multilabel cases, if average is False, current implementation stores all input data (output and target) in
as tensors before computing a metric. This can potentially lead to a memory error if the input data is larger
than available RAM.
Args:
output_transform: a callable that is used to transform the
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the
form expected by the metric. This can be useful if, for example, you have a multi-output model and
you want to compute the metric with respect to one of the outputs.
average: if True, precision is computed as the unweighted average (across all classes
in multiclass case), otherwise, returns a tensor with the precision (for each class in multiclass case).
is_multilabel: flag to use in multilabel case. By default, value is False. If True, average
parameter should be True and the average is computed across samples, instead of classes.
device: specifies which device updates are accumulated on. Setting the metric's
device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By
default, CPU.
"""
def __init__(
self,
output_transform: Callable = lambda x: x,
average: bool = False,
is_multilabel: bool = False,
device: Union[str, torch.device] = torch.device("cpu"),
):
super(Precision, self).__init__(
output_transform=output_transform, average=average, is_multilabel=is_multilabel, device=device
)
[docs] @reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
self._check_shape(output)
self._check_type(output)
y_pred, y = output[0].detach(), output[1].detach()
if self._type == "binary":
y_pred = y_pred.view(-1)
y = y.view(-1)
elif self._type == "multiclass":
num_classes = y_pred.size(1)
if y.max() + 1 > num_classes:
raise ValueError(
f"y_pred contains less classes than y. Number of predicted classes is {num_classes}"
f" and element in y has invalid class = {y.max().item() + 1}."
)
y = to_onehot(y.view(-1), num_classes=num_classes)
indices = torch.argmax(y_pred, dim=1).view(-1)
y_pred = to_onehot(indices, num_classes=num_classes)
elif self._type == "multilabel":
# if y, y_pred shape is (N, C, ...) -> (C, N x ...)
num_classes = y_pred.size(1)
y_pred = torch.transpose(y_pred, 1, 0).reshape(num_classes, -1)
y = torch.transpose(y, 1, 0).reshape(num_classes, -1)
# Convert from int cuda/cpu to double on self._device
y_pred = y_pred.to(dtype=torch.float64, device=self._device)
y = y.to(dtype=torch.float64, device=self._device)
correct = y * y_pred
all_positives = y_pred.sum(dim=0)
if correct.sum() == 0:
true_positives = torch.zeros_like(all_positives)
else:
true_positives = correct.sum(dim=0)
if self._type == "multilabel":
if not self._average:
self._true_positives = torch.cat([self._true_positives, true_positives], dim=0) # type: torch.Tensor
self._positives = torch.cat([self._positives, all_positives], dim=0) # type: torch.Tensor
else:
self._true_positives += torch.sum(true_positives / (all_positives + self.eps))
self._positives += len(all_positives)
else:
self._true_positives += true_positives
self._positives += all_positives