create_lr_scheduler_with_warmup¶
-
ignite.contrib.handlers.param_scheduler.
create_lr_scheduler_with_warmup
(lr_scheduler, warmup_start_value, warmup_duration, warmup_end_value=None, save_history=False, output_simulated_values=None)[source]¶ Helper method to create a learning rate scheduler with a linear warm-up.
- Parameters
lr_scheduler (Union[ignite.contrib.handlers.param_scheduler.ParamScheduler, torch.optim.lr_scheduler._LRScheduler]) – learning rate scheduler after the warm-up.
warmup_start_value (float) – learning rate start value of the warm-up phase.
warmup_duration (int) – warm-up phase duration, number of events.
warmup_end_value (Optional[float]) – learning rate end value of the warm-up phase, (default=None). If None, warmup_end_value is set to optimizer initial lr.
save_history (bool) – whether to log the parameter values to engine.state.param_history, (default=False).
output_simulated_values (Optional[List]) – optional output of simulated learning rate values. If output_simulated_values is a list of None, e.g. [None] * 100, after the execution it will be filled by 100 simulated learning rate values.
- Returns
ConcatScheduler
- Return type
Note
If the first learning rate value provided by lr_scheduler is different from warmup_end_value, an additional event is added after the warm-up phase such that the warm-up ends with warmup_end_value value and then lr_scheduler provides its learning rate values as normally.
Examples
torch_lr_scheduler = ExponentialLR(optimizer=optimizer, gamma=0.98) lr_values = [None] * 100 scheduler = create_lr_scheduler_with_warmup(torch_lr_scheduler, warmup_start_value=0.0, warmup_end_value=0.1, warmup_duration=10, output_simulated_values=lr_values) lr_values = np.array(lr_values) # Plot simulated values plt.plot(lr_values[:, 0], lr_values[:, 1], label="learning rate") # Attach to the trainer trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)