PrecisionRecallCurve¶
-
class
ignite.contrib.metrics.
PrecisionRecallCurve
(output_transform=<function PrecisionRecallCurve.<lambda>>, check_compute_fn=False)[source]¶ Compute precision-recall pairs for different probability thresholds for binary classification task by accumulating predictions and the ground-truth during an epoch and applying sklearn.metrics.precision_recall_curve .
- Parameters
output_transform (Callable) – a callable that is used to transform the
Engine
’sprocess_function
’s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs.check_compute_fn (bool) – Default False. If True, precision_recall_curve is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function.
- Return type
PrecisionRecallCurve expects y to be comprised of 0’s and 1’s. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below:
def activated_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y roc_auc = PrecisionRecallCurve(activated_output_transform)
Methods