Shortcuts

JaccardIndex

ignite.metrics.JaccardIndex(cm, ignore_index=None)[source]

Calculates the Jaccard Index using ConfusionMatrix metric. Implementation is based on IoU().

J(A,B)=ABAB\text{J}(A, B) = \frac{ \lvert A \cap B \rvert }{ \lvert A \cup B \rvert }
Parameters
Returns

MetricsLambda

Return type

ignite.metrics.metrics_lambda.MetricsLambda

Examples:

train_evaluator = ...

cm = ConfusionMatrix(num_classes=num_classes)
JaccardIndex(cm, ignore_index=0).attach(train_evaluator, 'JaccardIndex')

state = train_evaluator.run(train_dataset)
# state.metrics['JaccardIndex'] -> tensor of shape (num_classes - 1, )